Selective Ensemble of Classifier Chains
نویسندگان
چکیده
In multi-label learning, the relationship among labels is well accepted to be important, and various methods have been proposed to exploit label relationships. Amongst them, ensemble of classifier chains (ECC) which builds multiple chaining classifiers by random label orders has drawn much attention. However, the ensembles generated by ECC are often unnecessarily large, leading to extra high computational and storage cost. To tackle this issue, in this paper, we propose selective ensemble of classifier chains (SECC) which tries to select a subset of classifier chains to composite the ensemble whilst keeping or improving the performance. More precisely, we focus on the performance measure F1-score, and formulate this problem as a convex optimization problem which can be efficiently solved by the stochastic gradient descend method. Experiments show that, compared with ECC, SECC is able to obtain much smaller ensembles while achieving better or at least comparable performance.
منابع مشابه
Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کامل